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Abstract
We show that general 3n-j (n > 2) symbols of the first and second kinds for the
group SU(2) can be reformulated in terms of binomial coefficients. The proof
is based on the graphical technique established by Yutsis et al and through a
definition of a reduced 6-j symbol. The resulting 3n-j symbols thereby take
a combinatorial form which is simply the product of two factors. The one is
an integer or polynomial which is the single sum over the products of reduced
6-j symbols. They are in the form of summing over the products of binomial
coefficients. The other is a multiplication of all the triangle relations appearing
in the symbols, which can also be rewritten using binomial coefficients. The
new formulation indicates that the intrinsic structure for the general recoupling
coefficients is much nicer and simpler, which might serve as a bridge for
study with other fields. Along with our newly developed algorithms, this also
provides a basis for a direct, exact and efficient calculation or tabulation of
all the 3n-j symbols of the SU(2) group for all the range of quantum angular
momentum arguments. As an illustration, we present the results for the 12-j
symbols of the first kind.

PACS numbers: 03.65.Fd, 02.20.Uw

1. Introduction

The quantum theory of angular momentum is a fundamental field in sciences. In particular,
the topic of angular momentum coupling scheme, which is an indication of the geometric
aspect of an interacting many-body system, plays a paramount role in a variety of disciplines
[1–4]. In the mathematical front line of development, there exists a close relation for the
coupling or recoupling coefficients of angular momenta with its various branches such as
combinatorial analysis, special functions, calculus of finite difference, algebra and topology
[5]. The investigation of their properties and relations should always have great implications or
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impact on those fields. For example, the Clebsch–Gordan coefficients, Racah coefficients and
other coefficients are expressible in terms of generalized hypergeometric functions of many
variables [1, 5, 6]. These functions are related to the discrete orthogonal polynomial, which
has wide applications in areas from numerical analysis, to solutions of differential equation
in physics, and to topological study. The applications of the vector coupling coefficients also
abound in physical sciences including the fields of quantum chemistry and quantum molecular
dynamics. The Clebsch–Gordan coefficients and Racah coefficients, for instance, are the
basic mathematical apparatus in the formulation of rovibrational spectra, quantum scattering
process and photodissociation dynamics for polyatomic molecules or molecular complexes
[3, 7–9]. They are also very useful for the evaluation of molecular integrals in electronic
structure calculation, where the primary basis functions are chosen to be the spherical
harmonics or solid harmonics [10]. The myriad applications of coupling theory of quantum
angular momentum in the traditional fields of atomic physics, nuclear physics and elementary
particle physics are well known. A noticeable recent development is their role in the study
of quantum integrable systems. One example is that the products of two wavefunctions for a
Calogero–Sutherland system with a potential v(x) = sin−2 x are proved to be identical with
the Clebsch–Gordan coefficients [11].

In most of the applications described above, the exact determination of angular momentum
coupling and recoupling coefficients for all ranges of quantum angular momentum arguments
is often very critical. In the first place, it is obvious that the domain of definition for these
quantum numbers occurring in the coefficients should be the full range for the investigation
in mathematical applications. Semiclassical limits of coupling and recoupling coefficients
also play very important roles in modern physics. This includes the famous Ponzano
and Regge’s relation of the asymptotic 6-j symbols with the partition function for three-
dimensional quantum gravity [12]. The Heisenberg correspondence limits or asymptotic
approximations of these coefficients are also useful in the study of scattering cross section and
Rydberg states of molecules [13, 14]. Furthermore, in quantum molecular scattering study
for the chemical reactions, the angular momentum coupling coefficients naturally arise in
the evaluation of interaction matrix elements between the channels corresponding to different
chemical arrangements. When the collision energy increases, the channels with large angular
momentum become energetically accessible, and the accurate computation of their coupling
coefficients is important for a correct description of the chemical dynamic processes [15].

Recently, we have independently shown that all the 3-j, 6-j and 9-j symbols can be
reformulated as a common combinatorial form by utilization of binomial coefficients [16].
The intrinsic structure of these symbols is found to be much nicer and simpler than thought
before, which is simply the product of a polynomial and a square root of integer multiplication
and division. This opens an avenue for the symbolic study of these symbols, and also lays the
foundation for an exact, direct and fast numerical calculation or tabulation of each coupling
or recoupling coefficient. In addition, it provides a convenient numerical approach for exactly
locating all the structural and non-trivial zeros of angular momentum coupling or recoupling
coefficients since these zeros can be determined exclusively by the polynomial part from our
schemes. Although it is still an interesting work to identify their physical implication, a few
non-trivial zeros do show obvious associated physical meaning [1].

This paper aims at a generalization of methods we developed previously for the work
on the direct and exact calculation and tabulation of 3-j, 6-j and 9-j symbols to the case
of 3n-j (n > 2) symbols of the first kind and the second kind [16]. The concentration is
more on the analysis of their intrinsic structure. In section 2, we begin with a review of the
general theory about 3n-j symbols, their calculation and their decomposition in particular.
By utilizing the graphic technique, developed by Yutsis et al and via a definition of reduced
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6-j symbols, we give a formal description and detailed proof about the statement that all the
3n-j (n > 2) symbols of the first and second kinds can be factorized into a prefactor and an
integer or a polynomial part. The latter is simply the single sum over the products of reduced
6-j symbols. In section 3, we concretize our development in section 2 and give the calculation
results for the 12-j symbols of the first kind. Section 4 is a discussion and conclusion.

2. Factorization of 3n-j symbols with binomial coefficients

The angular momentum coupling leading to a total angular momentum of a composite system
can be characterized by a binary tree. Each binary coupling scheme corresponds to a way
for constructing the basis vectors for the tensor product Hilbert space. The general angular
momentum recoupling coefficients 3n-j for a system with n + 1 degrees of freedom are the
unitary transformation matrix elements connecting these different pairwise and sequential
angular momentum coupling schemes. These coefficients have been formulated in different
manners including explicit algebraic expressions, the formulae in terms of Clebsch–Gordan
coefficients or Racah coefficients, and graphic representations, etc, serving for different
purposes [2]. From the computational point of view, however, the forms of these different
expressions really matter considering the requirements of accuracy, efficiency or convenience
for their practical evaluation. For example, the explicit algebraic expressions were most often
used in numerical calculations in the early years. But it is well known that they suffer serious
numerical instability and overflow or underflow are occurring issues. The recursive relations
for the coupling or recoupling coefficients are used in the accurate calculation. However, it is
not a direct and efficient approach either [17, 18]. Other methods based on the hyper-geometric
series expansions or graphical techniques have been developed, but the programmes are usually
too complicated to be practical. The representations of the general recoupling coefficients
in terms of 6-j symbols are also employed for computation, but similar problems exist as
for those using algebraic expressions [4]. Recently, we have developed an approach for
direct and exact computation and tabulation of 3-j, 6-j and 9-j symbols for all ranges of
angular momentum arguments. The calculation scheme is based on the reformulation of these
symbols by utilization of binomial coefficients. The resulting formulae are simply the product
of two factors, which lay the foundation for a symbolic study as well as for a direct and
exact calculation of its numerical values. Furthermore, it gives a deeper understanding of the
intrinsic structure of these coupling or recoupling coefficients, and establishes a link for the
study with the other branches of the fields. Encouraged by this work, we believe that the
statement that a recoupling coefficient can be factorized into an integer or a polynomial part
times a multiplication of all the triangle relations appearing in the coefficient might generally
hold for any number or any kind of angular momentum coupling. Motivated by getting a
better understanding of their intrinsic structure including their connection to other fields, and
giving a unified exact calculation scheme, it is very natural to extend previous work to the case
of the general 3n-j symbols.

In our previous work on the 3-j and 6-j symbols, the derivation is from their algebraic
expressions. For 9-j symbols, however, the derivation is from their expression in terms of
6-j symbols rather than the explicit triple-sum formula. In fact, for the general 3n-j (n > 2)

recoupling coefficients, which include 9-j symbols as a special case, there is a well-known
fundamental theorem which states that they can be written as multiple sums over the products
of 6-j symbols. The soundness of this theorem is based on the recognition that there are
only two basic operations: commutation or association in the binary coupling theory which
can transfer one binary coupling scheme to another. The operation of sequences of these two
operations will either change the phase of basis vectors or introduce an additional factor of
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Racah coefficients or 6-j symbols. From the derivation for 9-j symbols, it seems obvious that
a general 3n-j symbol can be reformulated in terms of reduced 6-j symbols defined in [16]
similar to that for 9-j symbols. However, an unpleasant fact about these transformations is
that there exist different paths from a given binary coupling scheme to another. In addition,
what kind of actual form to which a recoupling coefficient can be reduced depends on the type
of that coefficient. For the special types, the 3n-j symbols of the first and second kinds, which
are most commonly used and most important up to the present time, things look much more
obvious and we do achieve our goals here.

The 3n-j symbols of the first kind are proportional to the unitary transformation matrix
elements between two basis vectors associated with two different coupling schemes, defined
by
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where the phase and proportional coefficients are introduced so that the symbols possess the
maximal symmetry. They contain the 6-j symbols and the 9-j symbols as special cases except
for possible phase factors. Similarly, the 3n-j symbols of the second kind are related to the
transformation matrix elements between two different coupling schemes in the following way,
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The study of their properties such as reduction is best performed through the graphical
technique developed by Yutsis et al [19–23]. It merits a simple and clear presentation of
angular momentum relations and facilitates their general analysis. In the graphical method,
a general 3n-j symbol is represented by a closed diagram or polygon with 3n line segments
representing the angular momenta and the 2n vertices being their Clebsch–Gordan coupling
coefficients. It is formed by combining the free ends of the line segments with the same
angular momentum arguments for the coupling coefficients. For the reduction process we are



Universal factorization of 3n-j (j > 2) symbols 3263

studying, however, it is the opposite process, which corresponds to the separation of a diagram
into its several sub-diagrams. Some rules have been developed guiding this decomposition,
which can be classified into two types of situation. The first one is the case when the diagram
is separable on one, two or three lines. The diagram can therefore be decomposed into two
independent parts. The second one is the situation when the diagram is separable on four or
more lines. The decomposition of this diagram will bring one or more summation indices,
depending on the number of connected lines. The reduction process of an angular momentum
diagram is a repeating and sequential application of the above rules. This also leads to the
fundamental theorem in quantum angular momentum theory we mentioned earlier.

For the 3n-j symbols of the first kind we are studying, their diagram is a Mobius band
or a band with braiding, while the diagram for the second kind is a band without braiding as
shown in [24]. The common feature of these diagrams is that after utilization of the orthogonal
relation for the coupled states, which introduces a summation index, they both become ones
separable on three lines. Repeating and sequential application of the rule for the diagram
separable on three lines then leads to the complete reduction of the diagram, for example, for
the 3n-j symbols of the first kind, in terms of the diagrams for the 6-j symbols. Analytically,
this process indicates the following relation,


j1 j2 . . . jn

k1 k2 . . . kn

l1 l2 . . . ln
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which is just the single sum over the products of 6-j symbols. The same procedure also yields
the relation for the 3n-j symbols of the second kind,
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where

S =
n∑

i=1

(ji + ki + li). (5)

Two points are noticeable in the above diagram decomposition. First, any triangle relation
arising from the diagram separation will always appear in both separated parts. Second, for the
3n-j symbols of the first and second kinds, all the 6-j symbols are symmetric in the sense that
summation is single fold and only one summation index appears in each of the 6-j symbols.
These are critical in the current reformulation.

Now, we define an integer factor or polynomial by[
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which is the sum over the products of four binomial coefficients. It relates to the 6-j symbol
in the following way,{

j1 j2 j3

j4 j5 j6

}
= �(j3j4j5)�(j2j4j6)�(j1j5j6)

�(j1j2j3)

[
j1 j2 j3

j4 j5 j6

]
. (7)

It is simply the polynomial part of the 6-j symbol but nevertheless has its full symmetry. In
addition, the triangle relation appearing in the denominator can be any one of the four triangle
relations for the 6-j symbol. Because of its status as a fundamental building block in all
following formulation, we call it the reduced 6-j symbol. Substitution of equation (7) into
equation (3) or (4) yields the following two formulae,
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Equations (8)–(11) constitute the final results of this section. By utilization of binomial
coefficients, the 3n-j (n > 2) symbols of the first and second kinds are now in a separated
form with one factor being the product of all the triangle relations occurring in the symbol,
and the other being an integer or polynomial. It is in the form of a two-fold summation, and
the corresponding actual polynomial form is a topic for further study.
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It should be mentioned that the graphical technique of Yutsis et al utilized here for the
angular momentum coupling has proved to be a powerful tool in the theory for quantum
many-body particles in general. In recent years, for instance, some researchers have employed
it for the study of complex spectra [25]. Extended to the approach of unitary group U(n) from
SU(2), they not only use the graphical technique for the coupling of states but also for the
representation of matrix elements of the generators and their product. Similar rules for the
graphical decomposition have also been developed. In addition, the factorization of the matrix
elements of the generator product via the graphical decomposition rules has been achieved
even though it is for different purposes and in different contexts.

3. Examples: 12-j symbols of the first kind

As an illustration of the power of the methods and algorithms discussed previously for the
reformulation and exact calculation of angular momentum recoupling coefficients, we present
the results for the 12-j symbols of the first kind. The 12-j symbols arise in the recoupling
of five angular momenta [2, 24, 26, 27]. They are related to the theory of the fractional
parentage coefficients (fpc), which are used, for example, in the construction of wavefunctions
for N identical particles and for the evaluation of their matrix elements for operators from the
counterparts for N − 1 identical particles coupled with one more particle [28]. Recently, it
was found that the well-known Ponzano and Regge’s formula, which connects the asymptotic
form of the Racah–Wigner 6-j symbols with the partition function for three-dimensional
quantum gravity mentioned at the beginning, can be extended to the physically significant
four-dimensional case by utilization of the 12-j symbols [29]. There are five distinct types of
abstract cubic graphs associated with the coupling of five angular momenta. However, three
of those correspond to the recoupling coefficients which can be directly factorized into the
products of 6-j symbols or 9-j symbols according to the rules for the first case discussed
in the previous section. Therefore, the actual number of 12-j symbols is two [1, 2]. The
12-j symbols of the first kind, for example, are the transformation of the following two
coupling schemes,


j1 j6 j7 j8

j2 j3 j4 j
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7 j ′
8




1
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From the results of the last section, they can be formulated in the factorized form as
follows,
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Table 1. A table of 12-j symbols and corresponding decimal values.


j1 j6 j7 j8

j2 j3 j4 j

j5 j ′
6 j ′

7 j ′
8


 Tabulation Exact decimal values




0 1 1 1
1 1 0 1

1 1 1 1




243−6 × (1) 0.148 148 148 148 148




1 1 2 2
2 2 2 1

1 2 1 2




−2−23−35−87−1892 × (1) −5.179 037 928 267 551 × 10−3




2 1 2 1
2 2 1 2

1 1 2 2




2−6315−871412 × (1) 3.757 712 069 863 789 × 10−2




3 3 5 4
2 4 5 3

4 2 4 5




−2−143−165−77−10

×11−613−37432

×(471, 15 204, 19 117)

−1.528 195 512 735 275 × 10−3




4 3 5 6
3 5 6 4

2 4 3 5




3−145−27−211−7

×13−617−1

×(20 891, 18 501)

2.236 532 215 249 387 × 10−4




5 5 4 3
6 4 6 4

2 4 7 5




2−163−6537−711−5

×13−519110915212

×(2467)

−4.451 211 337 906 913 × 10−3




6 4 7 4
2 5 7 6

4 5 6 3




2−13−85−37−611−6

×13−717−219−1

×(10 963, 3214, 29 879)

3.429 876 771 358 886 × 10−2




7 8 9 10
8 6 4 6

7 9 7 5




−2−303−3537−311−9

×13−517−819−7

×23−641211532

×(3297, 6491, 22 005,

×31 646, 20 367)

−0.708 747 948 235 219




10 7 8 6
9 10 6 8

7 9 10 7




−273−75−97−311−7

×13−1117−819−8291472

×1792 × (42, 6600,

×31 323, 17 916, 4465)

−0.320 311 506 498 916




20 15 9 10
14 18 15 15

9 8 10 12




233−135−197−311−5

×17−619123−429−8

×31−837−141−143−1

×2632 × (20 491, 6148,

×19 764, 6941)

1.315 510 402 031 053 × 10−13

where the integer or polynomial part is the sum over products of reduced 6-j symbols defined
by
j1 j6 j7 j8

j2 j3 j4 j

j5 j ′
6 j ′

7 j ′
8




1

=
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x

(−1)S−x(2x + 1)

[
j1 j5 x
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6 j6 j2

]

×
[
j6 j ′

6 x

j ′
7 j7 j3

] [
j7 j ′

7 x

j ′
8 j8 j4

] [
j8 j ′

8 x

j1 j5 j

]
(14)
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Table 2. Ten examples of structural or accidental zeros of 12-j symbols with small angular
momentum arguments.


j1 j6 j7 j8

j2 j3 j4 j

j5 j ′
6 j ′

7 j ′
8







j1 j6 j7 j8

j2 j3 j4 j

j5 j ′
6 j ′

7 j ′
8







3 2 2 2
2 1 0 3

2 1 0 0







2 3 2 2
2 2 0 2

1 2 0 0







2 2 3 3
1 2 0 2

2 2 0 0







2 2 1 1
3 2 0 2

2 2 0 0







2 1 2 2
2 2 0 2

3 2 0 0







1 2 2 2
2 3 0 1

2 3 0 0







3 2 2 2
2 0 1 3

2 1 1 0







3 2 1 2
2 1 1 3

2 1 1 0







3 2 2 2
2 1 1 3

2 1 1 0







3 2 3 2
2 1 1 3

2 1 1 0







3 2 1 2
2 2 1 3

2 1 1 0







3 2 2 2
2 2 1 3

2 1 1 0







3 2 3 2
2 2 1 3

2 1 1 0







2 3 2 2
2 2 1 2

0 2 1 0







1 3 2 2
2 2 1 1

1 2 1 0







1 3 2 2
3 2 1 1

1 2 1 0







2 3 2 2
2 1 1 2

1 2 1 0







2 3 3 2
2 1 1 2

1 2 1 0







2 3 2 2
1 2 1 2

1 2 1 0







2 3 1 2
2 2 1 2

1 2 1 0




where the S, as defined before, is the sum of all 12 angular momentum arguments. It is a
function of all 12 angular momentum arguments. However, unlike the cases for the rotation
matrices and 3-j and 6-j symbols, the actual form of the corresponding polynomial with
the defined arguments is unknown. As already demonstrated, the rotational matrices are
expressible in terms of the Jacobi polynomial [1], the 3-j symbols are proportional to the
Hahn polynomial [5] and the 6-j symbols are related to the Racah polynomial [5]. The
polynomial that the 9-j symbols correspond to and is expressible as an orthogonal one in two
discrete variables has been identified [30]. Nevertheless, it is expected that the same level
of theory as those for the 3-j and 6-j symbols can be developed also for the 9-j symbols
[30, 31].

Having rewritten the 12-j symbols of the first kind in the desired form, we are now in
a position to calculate and tabulate their numerical values. One of the major advantages in
our formulation is in the realization of a direct and exact calculation and tabulation of all
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recoupling coefficients of the first and second kinds for all ranges of angular momentum
arguments. In the summation step, we have developed a series of algebraic operation routines
for large integer, where integer algebraic addition and multiplication are performed in a basis
of 32 768. The array for the integer is arranged in order of increasing power so that the
rounding-off error can be avoided when converting to the decimal values and final results
are exact. In addition, we evaluate binomial coefficients recursively rather than doing the
calculation by definition. This avoids the numerical errors from computation while increasing
the efficiency of computation. In table 1, we list a table of 12-j symbols and corresponding
decimal values.

The structural zeros and accidental zeros of the 12-j symbols can also be easily and
safely determined by our schemes, which are just the zeros of the corresponding integer or
polynomial part. Obviously, exploration of the mathematical or physical meaning of these
zeros should be an interesting and valuable investigation. We list in table 2 some of the
structural or accidental zeros in order that future researchers might have a comparative study.

4. Discussion and conclusion

In this paper, we have factorized the 3n-j symbols of the first and second kinds in a form which
is a prefactor times an integer or a polynomial. The immediate benefit of this reformulation is
that, when combined with our developed algorithms, it provides an analytical foundation for a
direct, exact and fast calculation of all the 3n-j symbols of the first and second kinds. It also
gives a convenient and exact approach for determining all their structural or accidental zeros.
It is really very significant considering their wide applications in a variety of fields.

Furthermore, from the analytical point of view, the reformulation indicates a simpler
algebraic structure for the recoupling coefficients which will serve as a bridge for the study
with other fields. The actual form of the integer or polynomial part with identified arguments
needs to be explored. Their properties including the relations to the other areas are expected
to be investigated.

Just like the case when the building block for recoupling coefficients has been changed
from the fundamental Clebsch–Gordan coefficients to the Racah coefficients which is indicated
in the fundamental theorem of quantum angular momentum, it is also a surprise that the reduced
6-j symbol, as we have defined it, can serve as a similar building block for the 3n-j symbols of
the first and second kinds, where the general relation with a polynomial has been established.
Nevertheless, for the general recoupling coefficients, which cover the cases of the third or
higher kinds, things do not look so clear. The endeavour to explore the similar structure seems
elusive. Even though we can always transfer a 3n-j symbol to the multiple sum over the
products of 6-j symbols, it is by no means obvious that we might reformulate it as the multiple
sum over the products of reduced 6-j symbols with one factor being an integer or polynomial.
What kind of role does the binomial coefficient play in the current reformulation? What is
the building block for all the recoupling coefficients when they have the desired factorization?
These are the questions to be answered. We have more discoveries to make and we will have
more to understand about their intrinsic structure.
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